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SUMMARY 

The engineering method of Schischka for the determination of 

the maximum allowable hydrostatic pressure producing plastic deformation 

of a closed circular cylindrical shell stiffened by equally spaced cir- 

cular rings of identical geometric and elastic properties has been 

extended to include the "beam-column" effect of the axial portion of 

the load on the cylinder and the Viterbo effect. 

Determination of the maximum allowable pressure for three 

cylinders whose physical properties lie within the range of interest to 

the naval architect indicates that the maximum allowable pressure in 

some cases may exceed considerably the elastic limit pressure.   Further- 

more, it is shown that for high yield    strength materials the maximum 

allowable and elastic limit pressures, as well as their difference, cal- 

culated with the beam-column effect included, may be appreciably smaller than 

the corresponding quantities obtained with the beam-column effect neglected, 

A simple measure of the beam-column effect is shown to be the ratio of the 

pressure applied to a cylinder to the critical pressure for the cylinder 

with rings disregarded» 
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INTRODUCTION 

The maximum allowably hydrostatic pressure which a reinforced 

cylindrical shell can withstand without danger of collapsing due to ex- 

cessive plastic deformation is of particular interest to the naval 

architect. In Ref» (1) Schischka has presented an engineering approach 

to this problem which is somewhat similar to the method used in the limit 

design of beams and which is based upon the von Mises maximum shear strain 

energy criterion for plastic deformation (Rof. (2)), Schischka obtains the 

elastic limit pressure p  by applying the von Misee criterion to the 
Lo 

axial and • 'rcumferential stresses which occur at the intersection of the 

shell and ring frame. However, the maximum allowable pressure p  is 
o 

obtained by considering that residual stresses are induced by a preliminary 

loading, unloading, and subsequent reloading of the cylinder and by the 

application of the von Mises criterion at the intersection of the shell and 

ring frame as well as at a plane midway between the rings. Although the re- 

sults presented in Ref. (1) indicate that the maximum allowable pressure 

may exceed the elastic limit pressure by a considerable amount, this need 

not be the case when high strength alloys ire used for shell construction» 

In the present report, the "beam-column" effect of the axial load has been 

included so that the elastic limit pressure p and the maximum allowable 

pressure pQ used hero correspond to the elastic limit pressure and maximum 

allowable pressure of Ref. (1) which have been designated herein for conven- 

ience as p  and p  , respectively. For cases where high strength alloys 
o     ° 

are used the beam-column effect of the axial portion of the load, which was 

omitted in Schischka's work, may be very significant» 



It is the purpose of the present report to modify the equations 

of Hof. (1) so as to include the complete effect of the axial load as well 

as the Viterbo effect described in Ref. (3). 

The authors are indebted to Professor N.J, Hoff for his guidance 

and criticism and to Messrs J.G. Pulos and K.A.V. Pandalai for their aid 

in performing the calculations for this investigation. 

3~ 



SYMBOLS 

A « Ar ♦ bt 

" r 

C\>  ^2* ^3* ^ 

D «* 

E 

G 

I 

cross sectional area of reinforcing ring 

parameters 

Et3/12(l-v2) 

Young's modulus 

shear modulus 

moment of inertia of shell plating per unit circumferential length 

K.,K2...Kg  parameters 

H     half length of unsupported shell of a typical bay- 

bending moment par unit circumferential length of shell 

applied axial tensile fore© per u^it circumferential length of shell 

shear strain energy per unit volume 

shear strain energy per unit volume in shell at inner surface at ring. 

U 

Us shear strain energy per unit volume in shell at outer surface at 
ffl        plane mid-«ay between rings 

U elastic limit shear strain energy per unit volume 

a radius of median sur 

b faying width of ring 

o - [k2 - (PA)]1/2 

d a [k2 + (p/4)31/a 

e * cL 

f  m dL 

k » C3(l-v2)/a2t231/4 

kl'k2 parameters 

P hydrostatic pressure 
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p ©lastic limit pressure, no beam-column effect 
Lo 

p maximum allowable pressure, no beam-column effect 
ao 

p elastic limit pressure, beam-column effect included 

p maximum allowable pressure, beam-column effect included 

"p     * 2Et2/a2[3(l~v2)]1/2 

cr 

t shell thickness 

w radial deflection of shell, positive outward 
_ 2 
w     ~ [l-(v/2)](pa /Et) 

x axial coordinate of point on median surface of shell 

TJ     - A^V/t 

$ inelastic rotation of axial shell elements at rings 

v Poisson's ratio 

p  » ~(S/D) « pa/2D 

aT*a2 Principal stresses 

aT yield stress for uniaxial tension or compression 

Q  ,CL total axial and circumferential stresses, respectively, positive 
x   * In tension 

i 
x
r      v$r     surface of shell at rings 

-      ,   „   i    axial and circumferential stresses, respectively, at inner 

QO  ,     a   o     axial and circumferential stresses, respective]^, at outer 
^m        *m     surface of shell at plans mid-way between rings 

- 5 - 



BASIC THEORY AND.ASSUMPTIONS 

l'n the present analysis of a transversely reinforced cylindrical 

shell loaded by hydrostatic pressure of a magnitude sufficient to cause 

yielding of the shell material, several simplifying assumptions are made. 

The reinforced shell is considered to be of infinite extent in its axial 

direction and to be subdivided into identical bays by rings of identical 

geometric and elastic properties (see Fig. (1)). The uniform shell thick- 

ness is considered small compared to the radius of the median surface of 

the shell, which in turn is assumed to differ negligibly from the radius 

of the median line of the ring. The hydrostatic pressure load is taken 

as constant over the entire structures- and hence for a pressure lew than 

that which would cause instability, it produces axially symmetric deform- 

ations. The magnitudes of these deformations am  considered to be of the 

order of the skin thickness. Thus the well-known ordinary differential 

equation for small axially symmetric deflections of thirnwalled circular 

cylindrical shells can be applied to the analysis of elastic portions of 

the cylinder (see Refs. (3) and (4)), 

As in Ref, (1), in the present report the maximum shear strain 

energy is considered as the criterion for yielding of the shell material. 

Thus any element of the shell is considered incapable of resisting further 

stresses once the shear strain energy per unit volume of that element 

becomes eaual to a value predetermined by experiment. This value depends 

upon the elastic properties of the shelü material and is taken as that 

value of the shear strain energy per unit volume at which yielding first 

occurs during a uniaxial tension or compression test of a sample of the 

material used, 
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It has been shown in Ref. (1) and it will be assumed here that 

for a given hydrostatic pressure the shear strain energy, considered as a 

function of the axial coordinate of the shell, has two distinct maxima, 

one at a ring and one at a plane mid-way between two successive rings for 

those cylinders characteristic of naval construction» The shear strain 

energy in the neighborhood of a ring rises sharply to a maximum at the 

inner surface of the shell, whereas the energy at the plane between rings 

rises gradually to a second but lower maximum at the outer surface of the 

shell, Thus with increasing hydrostatic load the shear strain energy will 

reach its maximum permissible value first at the inner surface of the shell 

adjacent to the rings. With further increase of load, the plastic zone which 

accompanies the prescribed value of the maximum shear strain energy expands 

in a direction normal to the shell surface as well as parallel to the shell 

axis» Simultaneously, the shear strain energy approaches its limit value 

at the outer surface of the shell mid-way between rings. Loading is considered 

to be maximum when the maximum permissible shear strain energy per unit 

volume is obtained at the latter location. Because of the rapidly changing 

value of the shear strain energy at the rings, it is reasonable to assume 

that the axial spread of the plastic zone in this neighborhood is oonfined 

to a narrow region within which all plastic deformation takes place. To 

facilitate a simple mathematical formulation of the problem of the inelastic 

behavior of the cylinder, this region is considered to be of infinitesimal 

extent. Consequently, except for the edges in contact with the rings, the 

entire shell may be treated as an elastic body, and the problem is reduced 

to the determination of the state of stress in a typical bay stressed by 

hydrostatic pressure as well as by deformations along the edges in contact 

with the rings. 
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These basic ideas and assumptions may be integrated from an 

alternative point of view if the following fictitious process of loading 

of the cylinder is imagined» Sufficient pressure is applied so that the shell 

yields at the rings but is stressed just within the yield limit at the plane 

midway between rings. Hence, except for infinitesimal strips at the rings, 

the shell remains elastic» Next the applied load is removt i. Since yielding 

occurred at the rings during the loading process, permanent distortions of 

the shell at the rings in the fcsrm of radial deflections, circumferential 

strains, and rotations of the axial elements are present after the load is 

removed. These permanent distortions at the rings result in "residual" 

stresses in the remaining elastic portions of the cylinder which has been 

restrained from returning to its original unstressed position. If the 

./linder is loaded once more, this load may be equal to or less than the 

previous load without inducing further inelastic distortions« However, 

the stresses in the elastic shell now consist of the residual stresses 

from the unloading process and the additional elastic stresses caused by 

the second application of load. Any increase in pressure above the orig- 

inally applied pressure w3.11 cause» further permanent distortions in conjunc- 

tion with yielding at the planes mid-way between rings. Thus the maximum 

allowable pressure is defined as the maximum hydrostatic pressure which can 

be applied to a cylinder and which produces yielding at the outermost fiber 

at a plane mid-way between rings. This pressure, together with the inelastic ■ 

edges distortions, produces total stresses (residual plus elastic) satisfying 

simultaneously the yield criterion at both the inner surface of the shell at 

the rings and the outer surface of the shell at the plane mid«way between 

successive rings. Consequently, the problem is reduced to the deteimination 

of the state of stress and subsequently the shear strain energy in a typical 

bay consisting of an elastic shell supported at its edges by inelastic strips 

of shell which transmit the load to elastic rings. 

-r 8 - 



DETERMINATION OF SHEIX STRESSES 

Deflections of an Elastic Shell 

In order to calculate the stresses in an elastic shell, the de- 

flections must first be found« In accordance with the assumptions made 

these deflections must satisfy the following fourth order linear differ- 

ential equation with constant coefficients [see Refs. (3) and (4).]s 

2 
" (  Et     P 

dx*  D dx"  aT)    D  aD 

L 2 
d*w  S d w   Et „   P  vS (X) 

in which w is the radial deflection of a point on the median surface of 

the shell of radius a [see Figs, (l) and (2)3, x the axial coordinate of the 

point, p the applied hydrostatic pressure, S the applied axial tensile foroe 

per unit circumferential length given by S » -pa/2, v Poisson^s ratio, t 

skin thickness, and D the bonding rigidity of the skin per unit length. 

The general solution of equation (1) contains four arbitrary con- 

stants, and consequently four boundary conditions are required to determine 

these constants. However, if the symmetry of load and structure is con- 

sidered and if the origin of coordinates is chosen midway between two ring 

frames as shown in Fig« (2), only even functions of the axial coordinate x 

are retained in the solution* and this automatically removes two arbitrary ' 

constants from the solution» The solution may then be given as 

w - A cos dx cosh ex + B sin dx sinh ex -» w ( 91 

where A and B are constants of integration and 

.1/2 
c • [k ~(p/4)] 

d- EkMP/4)]' 

p- (S/D) » pa/2D 

(3) 
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The first boundary condition to be satisfied is the requirement 

that the ring and shell must deflect radially the same amount where they 

are in contact at x =* L»    In Ref,  (3) it was found that this condition is 

satisfied if 

nr -  (t/2Ak4>[(±-S-)    r ~ 2DkSg Ua) 

IN ha re 

w   =• w when x « L 
r 

A    =• Aj, + bt 

A       is the cross sectional area of a reinforcing ring 

b       is the width of the ring faying surface 

kU *> 3d - v2)/(at)2 

_ 2 
w   « (2-v)pa /2Et 

Equation (4-a) includes the Viterbo effect, which accounts for the influence 

of the axial load on the ring deflection [Ref*  (3)]. 

The other boundary condition is that at the rings the shell rotates 

through some finite angle •$  because of plastic deformation through an in- 

finitesimal strip of shell plating adjacent to the rings.   Consequently, 

~- «Swhen x» L U*) 

Equations (2),  (4a)  and (4H) when solved simultaneously yield the 

solution for the deflection w(x): 

w(x) =*  (2/K2){[C4(wr + w)-C2$L]cos fx/L cosh ex/L + 

+ [C_(w   + vT) + C.-&L]sin fx/L sinh ex/l?» - w 
3    * J. J 
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where 

and 

where 

ö » cL, f « dL 

C-^ ■ cos f cosh e 

C2 ■ sin f sinh e 

Co * f sin f cosh e - e cos f sinh e 

C. » e sin f cosh e + f cos f 3inh e 

v»r + n a Kx Ck^L + TJKJW 

*! * efK3 - (l/2)(f2 - e2)K2 

Kx - 1/CA11S2/Ar + ef (a   + f2)(cosh 2e - cos 2f)] 

K2 « e sin 2f + f sinh 2e 

K„ =* e sinh 2e - f sin 2f 

(5b) 

It may be noted that equation (2) is only one of three possible 

trigonometric and hyperbolic forms of  solution of equation (1) and involves 

no imaginary cuantities if c is real (k2>p/4),    Jf c is imaginary then 

cosh ex/L   and sinh ex/L,    respectively, may be replaced by cos ex/L and 

sin ex/Lj and if c is zero, they may be replaced by unity and x.    Chly that 

form of solution of equation (1) which is given by equation (2) requires con- 

sideration for the present analysis.   For$=» 0, detailed descriptions of each 

of the three solutions are given in Ref. (3). 
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Stresses in the Shell 

The stresses in the elastic shell can now be obtained from 

equation (5), In the axial direction the total stress consists of a 

uniform axial compressive «trass and a bending stress which is linearly 

distributed across the shell thickness. In the circumferential direction 

the total stress is the sum of a uniform circumferential hoop stress due 

to radial expansion or contraction of the shell and a linearly distributed 

normal stress equal to the product of Poisson'a ratio and the total axial 

stress [see Ref» (3)], Thus the total stresses at the surfaces of the 

shell are 

and 

a  - s/t 7 Mt/(2i) (6) 

%"  ^x* ®*/& ^ 

in which cr and o,*, respectively, are the total axial and circumferential 

stresses in the shell considered positive in tension, M is the bending 

moment and I the moment of inertia of the shell plating, each for a unit of 

circumferential length of the shell» It should be noted that in these 

equations the minus si^n refers to the outer surface and the plus sign refers 

to the inner surface of the shell« The moment can be expressed in terms of 

the deflection of the shell as follows [Ref, (3)3» 

2 
M « D «L2L. (8) 

dx 

Thus equation (6) can be rewritten as 

ax . ^BtA(^v2)3C+ ^f * (l~v
2)apAt23 (9) 

dx 

in which the plus sign now refers to the outer surface of the shell. 
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For the purpose of the present report equations (7) and (9) re- 

quire evaluation only at the inner surface of the shell at the ring and at 

the outer surface of tho shell at the plane midday between rings« From 

equations (7) and (9), the corresponding stresses are 

*-~tEt/2(l~v2)]M~4)        -     ..V-/-2 

*r dir r 
er„   - - [Et/2(1~ v )]C~(-^|)„ + (1- v )ap/Etl (10) 

r *y 

ö ° - - [Et/2(1~ v )][(-ä-?)   + (1- v2)ap/Et2] (12) 
«i dx   m 

or0 -Vff° ♦ Enjj/a (13) 

in which the superscripts i and o, respectively, refer to the inner and outer 

shell surfaces, and the subscripts r and m, respectively^ refer to the ring 

and plane m.id-'nay between rings. 

Evaluation of equation (5) and its second derivative at x » Xj, » L 

and x =■ XJJJ « 0 results in the following final expressions for the stresses 

defined by equations (10) to (13)t 

4 o       O 0 0 0 
ox   m - [Et/(l-v )L ] (ijKjkgii + (l~v )al p/2Et   + (K^ly.efK )(&A2)? (U) 

i i 
o$   aV(Jx   + (E/a) [ftjiy^l^ + i^kj&Ll (15) 

0",° - CEt/(l~ v )L2]!n(o2 + f2)K.K * - (1- v2)aL2p/2Et2 + 
m * x 5 

* C(e2 + f2)«^^ - 2efK6 - (f2- e2)Kß3(*lA2)} (16) 

a$m " V°\i + (2E/a)  ^ CTlKlK7 " (1/2)3W + ^iVl ~ K8} W1^} (17) 
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in which 

k± - 8fK3 - (l/2)(f
2 - e2)K2 

k2 - ofK3 + (l/2)(f
2 - o2)K2 

2        2 
K, - l/tArjKjj/Ol   + ef(e   + f )(cosh 2e - cos 2f)] 

K   « e sin 2f + f sinh 2e 
2 

K« « e sinh 2a - f sin 2f 

K; »'cos 2f + cosh 2e 

S» »* f cos f sinh e ~> o sin f cosh e 

K, " cos f cosh e 

K   - e sin f cosh e + f cos f sinh © 
7 

Kft - sin f sinh e 

The remaining symbols have been defined previously.   Equations (U) to 

(17) are used in the determination of the shear strain energy quantities 

which are required in the present analysis» 

If Ref.  (3) Is used to supplement the present report, it is useful 

to note that the important parameters of that report are defined in terms 

of those of this report as follows» 

(WH( W - UA-^)] 

T »  TjKjKg 

G « ¥T 

- U 



t-i) 
1/2 

/T2K \(e2+ f ^ 

^ -»i/1 'L &, 

f „ f    (2)1  -A ffienU°n 

„ bxr ven Mis«* t»91* formation is 
xt ^ *«4n* the onset o^ f **ains a „re for deterrßining * ergy att«J» 

**a uss"   ^—* * -^ T --*—*hloh 

„„it voto* *3 . 2 ) 

, 0   are P^1 •«—' 
.   „near »odulua and ^ a*4 a2 rf ,twWe rf 

- -* 0 "      ; I, — - ~ * 5yrluaX dUecUon - 

v.u. at *W ring v« «oraased aa „«u at tw ring and a «oresaed aa 

°{ * rings, «.Pectiva^ - * «£        1    „I „ 

o  s* 
and o 

U 

(20) 



of the accurate solution of equations (22) and (23), since these equations 

contain transcendental functions of the pressure p and, therefore, must 

be solved by an iteration procedure» 

The actual procedure applied in the present report for the 

numerical solution of equations (22) and (23) is as folloWB, For a given 

cylinder, c and d of equations (4) are taken equal to k and the stresses of 

equations (1U)  to (17) computed as linear functions of p and # . Then the 

elastic limit pressure p. is computed from equation (22) by setting & - 0. 
o 

The elastic limit pressure is used as a basis for a first approximation in 

the determination of the linearized maximum allowable pressure pa , This 
a 
o 

quantity is determined from the simultaneous solution of the quadratic 

equations in p and $ (equations (22) and (23) with e « f - kL). To accom- 

plish this calculation, equations (22) and (23) may be plotted, or as in 

the calculations of the present report, transformed into equations suitable 

for a successive approximation solution. Equation (22) is written as a 

quadratic in descending powers of -9 , and equation (23) as a Quadratic in 

descending powers of p» Based on the results obtained from the elastic limit 

pressure calculation (-&« 0), a first approximation is made to the allowable 

pressure. Substitution of this quantity into the quadratic in £ and sub^ 

sequent solution of the resulting equation yields a first approximation to 

<& • This quantity is then introduced into the quadratic in p, and a second 

approximation to p is computed. The procedure outlined is repeated until 

two successive sets of solutions for p and •& are sufficiently close to each 

other« If more than one possible solution exists, that solution which cor- 

responds to the lowest pressure which is greater than the elastic limit 

pressure is the significant solution. 

The final value of p obtained as described above is then used 

as a basis for a first approximation in the numerical .solution of equations (22) and 

-f 17 



If the yield stress cr   of the material is determined by a uniaxial 
L 

compression or tension test, then the limiting value of the shear strain 

energy for the material tested can be computed from equation (18) and is 

■U  « (1/6G) 0? (21) 
SL 

Substitution of equation (21) into equations (19) and (20) yields the follow- 

ing equations which represent yield criteria for the shell at a ring and at 

the plane mid-way between rings. 

*m    *m    *m    *m 

If the uniaxial yield stresses are different for compression and tension, it 

is suggested that the former quantity be used since the stresses appearing 

in equations (22) and (23) are predominantly compressive. 

DETERMINATION OF MAXIMUM ALLOWABLE FKBSSURE 

The maximum allowable pressure p can now be defined mathematically 

as that pressure which together with inelastic edge distortions ^ / 0) pro- 

duces axial and circumferential stresses of magnitudes such that equations (22) 

and (23) are satisfied simultaneously. Accordingly, the elastic limit 

pressure p^ is defined as that pressure for which equation (22) is satisfied 

for # * 0» In addition, if in equations (14) to (17) e and f are each taken 

equal to kL, (p » 0), then the beam column effect of the second term on the 

left-hand side of equation (1) is omitted snd the stresses become linear 

functions of p and & * The latter fact can be used for the determination of 

a first approximation to the simultaneous solution of the non-linear equations 

(22) and (23)» Such a starting point is necessary for an efficient determination 
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(23) for e / f ^ kLt The first approximation for p is introduced into 

equations (22) and (?5), and the resulting quadratic equations in # are each 

solved« In general,, the value of •& obtained from equation (22) differs from 

that obtained from equation (23), If■ such is the case, a second approximation 

for p is made and equations (22) and (23) are again solved. The procedure 

is continued until that p is found which yields, within the desired accuracy 

for p, equal values of % , The final value of the pressure p thus obtained 

is the maximum allowable pressure and the corresponding ■& is a measure of 

the associated inelastic deformation of the shell at the ring« It is useful 

in the calculations to note that, in accordance with the sign convention 

adopted, only positive values of $ and p require consideration. 
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In the theory of beam columns a measure of the importance of the 

beaji>-.column effect is the ratio of the applied axial load to the theoretical 

critical load« Similarly for the present problem, such a criterion can alao 

be established. However, the theoretical elastic buckling load for this 

problem involves the solution of the transcendental equation obtained by 

taking (V&i) " 0 [see equation (5b)] and therefore is not readily obtainable. 

The present calculations show that a good indication of the importance of 

the beaia-column effect is simply the ratio of the hydrostatic pressure applied 

to the cylinder to the hydrostatic pressure which would produce axLally symmetric 

buckling of the cylinder with rings disregarded. This latter pressure is given 

2    o 2    1/2 
by   p   » 2Et /a [3(1- v )] and corresponds to that value of   p   which makes 

c si 0 in equation (.'*).    The axial stress produced by p     is the well-known cr 

theoretical buckling stress for axially symmetric buckling of a long thin- 

walled shell,   <?    « 0,605Et/a .   Thus, in the present calculations it is seen 

from Table I and Figs, (3) to (5) that for   0. » 100,000 lbs, per eq, in,, 

p   /p   - 0.943,   0,485, and 0,299, respectively, for cylinders 1, 2, and 3. 
ao   cr 

Accordingly, the corresponding relative importance of the beam-column effect 

as measured by the ratio (p   - p )/p     is 0,170, 0„12?, 0,007, 
ao     a     ae 

The inelastic angular distortion •& calculated for each of the three 

cylinders is plotted against   cr in Fig, (6) and compared therein with the 
L 

corresponding angle   #   which is obtained front calculations which neglect the 

beam-column effect.    It can be seen that ■& m$y be larger than or less than 

■&0   depending upon the cylinder characteristics. 
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CONCLUSIONS 

The results of the calculations described   previously   indicate 

that the maximum allowable hydrostatic pressure on a transversely reinforced 

thin-walled shell may considerably exceed the elastic limit pressure.   Further- 

more, the maximum allowable and elastic limit pressures may be influenced to 

a large extent by the beaut-column effect of the axial portion of the load» 

A simple measure of the effect is the ratio of the pressure calculated without 

the beam-column effect to the critical pressure for the unreinforced shell. 

If this ratio is SJUPII, the beam-column effect is likewise small.    If the 

ratio is large,  ' ae allowable and elastic limit pressures   p   and p_ 
a L 

respectively, as well as their difference (pQ - p ) can be appreciably smaller 

than the corresponding quantities   p     , p      , (p     *. p   )t respectively, 
ao       Lo ao       ^o 

calculated without consideration of the beam-column effect. 
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FIG.  1      LONG   TRANSVERSELY   REINFORCED   SHEl 
UNDER    HYDROSTATIC    PRESSURE 

FIG.  2     SIGN    CONVENTION    FOR    AXIAL   COORDINA' 
X    AND    RADIAL     DEFLECTION   w     FOR   / 

T-\S ni/-> Ai 
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